Integral pinching characterization of compact shrinking Ricci solitons
نویسندگان
چکیده
We investigate the pinching problem for shrinking compact Ricci solitons. Firstly, we show that every $n$-dimensional $(n\ge 4)$ soliton $(M^n,g)$ is isometric to a finite quotient of $\mathbb S^n$ under an $L^{n/2}$-pinching condi
منابع مشابه
Geometry of compact shrinking Ricci solitons
Einstein manifolds are trivial examples of gradient Ricci solitons with constant potential function and thus they are called trivial Ricci solitons. In this paper, we prove two characterizations of compact shrinking trivial Ricci solitons. M.S.C. 2010: 53C25.
متن کاملDegeneration of Shrinking Ricci Solitons
Let (Y, d) be a Gromov-Hausdorff limit of closed shrinking Ricci solitons with uniformly upper bounded diameter and lower bounded volume. We prove that off a closed subset of codimension at least 2, Y is a smooth manifold satisfying a shrinking Ricci soliton equation.
متن کاملGeometry of Complete Gradient Shrinking Ricci Solitons
The notion of Ricci solitons was introduced by Hamilton [24] in mid 1980s. They are natural generalizations of Einstein metrics. Ricci solitons also correspond to self-similar solutions of Hamilton’s Ricci flow [22], and often arise as limits of dilations of singularities in the Ricci flow. In this paper, we will focus our attention on complete gradient shrinking Ricci solitons and survey some ...
متن کاملOn Complete Gradient Shrinking Ricci Solitons
In this paper we derive a precise estimate on the growth of potential functions of complete noncompact shrinking solitons. Based on this, we prove that a complete noncompact gradient shrinking Ricci soliton has at most Euclidean volume growth. The latter result can be viewed as an analog of the well-known theorem of Bishop that a complete noncompact Riemannian manifold with nonnegative Ricci cu...
متن کاملConvergence of compact Ricci solitons
We show that sequences of compact gradient Ricci solitons converge to complete orbifold gradient solitons, assuming constraints on volume, the L-norm of curvature, and the auxiliary constant C1. The strongest results are in dimension 4, where L 2 curvature bounds are equivalent to upper bounds on the Euler number. We obtain necessary and sufficient conditions for limits to be compact.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Colloquium Mathematicum
سال: 2023
ISSN: ['0010-1354', '1730-6302']
DOI: https://doi.org/10.4064/cm8778-1-2023